

The Grid & BEAM RESTRICTING DEVICES

By

Dr. Ahmad Mokhtar Abodahab - MD

Lecturer of radiology – Faculty of Medicine – Sohag University

Certain devices are designed for restricting of

the undesirable radiation i.e. scattered radiation

1- Kilo voltage:

- Increase of kilovolt age → increase X ray energy → more beams undergo Compton reaction & scattered.
- SO , all radiographs should be taken at <u>LOWEST reasonable</u>
 <u>Kv</u> to minimize scattered radiation .
- To increase required x ray dose with out increase energy,
 INCREASING OF mAs is the solution.

2- Field size :

- Increase field size

 increase scattering .
 - So Collimate Field

3- Patient thickness:

- The more thick part radio graphed →
 more scattering .
- Unfortunately, this factor is not under control.

HOW TO CONTROL SCATTERED RADIATION?

 2 devices are designed specifically to this aim: *Beam restrictors & * Grids

- TYPES OF BEAM RESTRICTORS :
- 1. Aperture diaphragm.
- 2. Cones or cylinders.
- 3. Collimators.

 Scattered Radiation is a great problem disturbing the quality of radiographic image.

• THE GRID

IS a great solution for this problem .

SO What is the grid ... & how it work ?

Introduction:

- Scattered X ray produced from the patient by Compton effect
- it is a **harmful** factor to the process of imaging .
- The intensity of scattered radiation is relatively rallated to: such as
 - * Kv * Beam size * Patient thickness

Steps of solutions of this problem:

Using of intensifying screens → improving of image quality, BUT not due to the previous cause.

- Selective filter passing 1 ry beam , was not effective
- The extremly effective device for elimination of scattered X ray was THE GRID.

Structure of the grid:

In 1913 it is invented by

Dr. Gustave Bucky

 It is a board like device, composed of alternating strips of:

& * Radio translucent material

(interspace material)

- This structures are encased in an Alumenium case, for:
- * Rigidity
- * Protection from moisture.
 - In Typical grid :
- grid strips thickness 50 um , interspace strips 350 um
- Up to 12.5% of all photons falling on grid absorbed.

HOW A GRID WORK:

- All primary beam photons are passing when falling on interspace strips.
- Scattered beams may or may not pass according there angle,
- if a beam falling by an angle. It will strike grid strip
 by side → absorbed & not passing to the film.

*1ry beam *Scattered

- If a grid is remove about 80:90 % of scattered radiation = it has good clean up.
- The percentage of absorbed radiation =
 width of grid strips / width of (grid + iterspace)
 strips

percentage of absorbed radiation

Characteristics of grid construction:

- 1- GRID RATIO
- 2- GRID FREQUENCY
- 3- GRID MATERIAL
- 4- INTERSPACE MATERIAL

1- GRID RATIO:

H or Height of grid strips .
 D Thickness of interspace

 High ratio → less angle of deviation is allowed → more effective clean up .

Grid Ratio

- Increase of Grid ratio is made by :
- 1- Increase grid height
- 2- Reduce width of inter space or both

- Grid ratio generally **5:1** to **16:1**
- Disadvantages of high ratio:
 - 1- Difficult to be manufactured
 - 2- Need **higher exposure** to get satisfied image

2- GRID FREQUENCY

- It is number of grid strips / inch or cm.
- * Grids with **high frequency** \rightarrow less distinct grid lines in film .
- Most grids have frequency 60:110/inch i.e.

24: 42 / cm

Disadvantage:

- Increase frequency → more dose needed ,
- -this can be **overcomed by <u>decrease thickness</u>** of grid strip.

(but this will decrease its clean up)

Less Frequency Grid

Higher Frequency Grid

3- GRID MATERIAL:

- The grid strip should be thin & highly absorber to x ray.
- Lead Is the most widely used material
- Why? due to: * High atomic number
 - * Easy to be shaped
 - * Relatively inexpensive
- Other substances: tungsten, platinum, gold & uranium.
- Non of these materials is better than lead.

4- Interspace material:

- Aluminum or plastic fibers, are the main substances
- Advantages of aluminum :
 - 1- High atomic number → some selective filtration of scattered rays .
 - 2- Give less visible grid lines
 - 3- It doesn't absorb moisture.
- Disadvantages: More dose is need with it.

* MEASURING GRID* PERFORMANCE

- The principle function of grid is : eliminating of scattered radiation → improve contrast.
- Thus to measure grid performance = measure
 of contrast improvement.
- Grid performance = contrast imrovement factor
 (k)

Contrast improvement factor (k): •

it is the ratio between contrast with & with out using a grid .

k = Radiographic contrast with grid
Radiographic contrast without grid

Most grids has (k) 1.5:2.5 •

- Factors affecting K :
- 1. High ratio → high k
- 2. Heavy grids → high k
- 3. High frequency \rightarrow low k

K is generally measuring at 100 kv •

SELECTIVITY (LEAD CONTENT)

In an ideal grid , all 1ry beams transmitted , & all scattered absorbed .

SELECTIVITY (\geq): is the ratio of

Transmitted 1ry radiation to scattered radiation.

Segma (\geq) = <u>1ry radiation transmitted</u> scattered rad transmitted Total mass of lead is the main factor affecting selectivity.

MORE LEAD -> HIGHER SELETIVITY

But proper arrangment is an important factor, if lead strips are adherent to each other → no image will be formed

HIGHER RATIO = HIGHER CONTRAST

HIGHFREQUENCY = LOW CONTRAST

* TYPES OF GRIDS *

1. Linear grids

2. Crossed grids

3. Focused grids

4. Moving grids

Moving grids:

· Grid lines :

Are the shadow lines of the grid strips appearing in the radiograph.

It occur due to **absorbtion of some 1ry beams** by grid strips.

- The more wide grid strips
 more obvious lines.
- More frequency
 Less obvious lines .

 At 1920, Dr. Hollies potter suggesting to make the grid moving during radio graphing the film, thus a moving grid invented.

By adding moving mechanism to a linear grid,
 it will become MOVING GRID.

Types of moving grid mechanisms:

- 1. Single stroke grid.
- 2. Reciprocating grid
- 3. Oscillating grid

Disadvantages of moving grids:

- 1. It require **bulky mechanism**, which able to be failed.
- 2. More distance is need between Film & patient, this give false magnification in the film.
- 3. Increase of exposure time.
- 4. The movement of the grid , may vibrate the film → blurred image .
- 5. Stroboscopic effect.

AIR-GAP Technique

- It is a technique used for reducing the scattering radiation.
- The film is present at 4:6 inches distance from the radio graphed part → scattered beams (which has low energy not reaching the film)
- Some degree of magnification occur with this technique, which can be considered & accepted.

BEAM-RESTRICTING DEVICES

TYPES OF BEAM RESTRICTORS :

- 1. Aperture diaphragm.
- 2. Cones or cylinders.
- 3. Collimators.

1- Aperture diaphragm:

- It is the simplest of all devices.
- It is simply a **lead diaphragm** attached to the head of X ray tube .
- Well designed diaphragm should be giving an image < film size with 0.25 inch in each side
 - → thus unexposed parts are visualized .

2-CONES & CYLINDERS:

- It considered a modification of diaphragm.
- It is an extended metal device restricting
- beam to the required size.
- Beam acquired by it is cylindrical.

- Opening of them are fixed → for specific types of examination .
- CONE CUTTING: if cone & film are not on a line
 - \rightarrow side of cone interfere with beam \rightarrow
 - unexposing of side of the film.
- Cones are used mainly in dental radiology.

Dental X-ray instruments for dental ...
castellini.com

3- Collimator:

Sources & Further reading:

Dark Room – Prof Dr. Nabeel Khattar

Dark Room – MOH Institute –

PROFF. DR. AHMED FARID YOUSIF

https://staffsites.sohag-univ.edu.eg/ahmed abodahab

